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ABSTRACT

The general characteristics of panel flutter at high
supersonic Mach numbers are examined theoretically. Linear
plate theory and two-dimensional first order aerodynamics are
used. The report attempts to clarify the important role of
damping, the relationship between traveling and standing wave
theories of panel flutter, and the effects of edge conditions.
The solution procedures and general mathematical behavior may
be of interest in other stability problems characterized by the

appearance of complex eigenvalues.
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NOMENCLATURE

A Coefficient of basic Eq. (18)

A.R. Amplification ratio

a Length of panel

Bg By Coefficients of basic Eq. (18)

b Width of Panel

C Coefficient of basic Eq. (18)

c Wave speed

C, Reference wave speed = 1.90 c, h/b

CprCpy Speed nf sound in air and in panel material

D Plate rigidity = Eh3/12(1- v2)

E, Coefficient defined by Eq. (70)

f Factor defined by Eq. (81)

GS Panel structural damping .

Ea Aerodynamic damping coefficient = .335{{%%?3%;}%% %i(%a

gs Effective structural damping coefficient = %Iéi

gr Total damping coefficient = 8a + g

g; Actual structural damping coefficient of ith mode
2 2 x (critical damping ratio)

Hm Coefficients

h Thickness of panel

i Jti?

K Elastic rfoundation stiffness

k Foundation parameter = Kaa/vaD



Fm

< ?? w2 Y S o> i o

Wavelength

Mach number

Number of half waves in lateral direction
Longitudinal and lateral compressive forces

Aerodynamic pressure loading
Coefficients defined by Eqs. (28a,b)

th

Generalized coordinate of n mode

Longit. compression parameter = Nva/WZD

Lateral compression parameter = Nyaz/sz

Parameter defined by Eq. (54)

Time

Velocity

Deflection of panel

Coordinates along length and width

Roots of characteristic equation of Eq. (18)
Decay rate = 5@;{5}

Determinant defined by Eq. (24)
Nondimensional coordinate = y/b

— o

Response of system = & + LW

1 3
] U « -
Dynamic pressure parameter = ¥ DIM-)
Poisson's ratio = .3
Nondimensional coordinate = x/a

Density of air and of panel material

Nondimensional time = wW,t

vi
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El

Subscripts

Superscripts

Complex function defined by Eq. (25)

Effective structural damping ratio = ) R
%’I “)I
Frequency
Ref £ ’"‘D 4
eference frequency =
chh ’ m /S'Hha

Frequency of i~ mode

Nondimensional frequency = W/w, = QQMbije}

Real
Imaginary
Flutter

Reference

Corresponding nondimensional quantities for low
aspect ratio panels (nondimensionalization based
on b rather than con a).
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SECTION I
INTRODUCTION

Panel flutter is the self-excited oscillation of the

external skin of a flight vehicle when exposed to an airflow
on one side.,

This type of aeroelastic instability has received much
study during the past fifteen years, both theoretically and
cxperimentally. The early work of Sylvester and Bakgr,1

Nelson and Cunningham,2 Fung,3 Hedgcpeth,4 Movchan,D Houbolt,6

to mention a few names, has been supplemented by much recent
work on the subject (see, for example, Refs. 7 through 14).
Today, a great quantity of literature on panel flutter exists,
and the problem is reasonably understood, although work still
remains to be done to better correlate theory with experiment
for certain panel configurations and Mach numbers. Fung, 10,15
in two excellent survey papers discusses the status of the panel
flutter problem. See also, Dowell and Voss,11 Bohont and

Dixon,14 Johns,16 Kordes, Tuovila, and Guy,17 and Shirk and
18

Clsen.

The present report will review the theoretical character-
istics of panel flutter at high supersonic Mach numbers, and will
attempt to clarify some of the loose ends in the literature
regarding the role of damping, traveling-wave versus standing-
wave theories, and effects of edge conditions. It is hoped
thereby to clearly present the high Mach number panel flutter
problem and its ramifications, some of which may not have been

apparent heretofore.

The solution procedures and gencral mathematical ochavior
may be of interest also in other stability problems character-
ized by the appearance of complex eigenvalues.



SECTION II
BASIC PANEL FLUTTER EQUATION AND ITS SOLUTION

The basic panel flutter problem can be formulated by
considering a flat, rectangular panel, simply supported on all
four edges, and subjected to a supersonic flow over one side.
See Fig. 1. Tlie panel additionally is subjected to midplanc
compressive forces Nx and N (lbs/in), rests on an elastic
foundation K (1b/in3), and has a structural damping G
(1bs-sec/in3). The governing differential equation for this
situation is,

——

EX 5hv Yw '5' ‘5
I)(-—! + + = A - hov _ W
PA S)M Bfl NX BX‘L (l)

where D is the plate rigidity, [Xp%:is the aerodynamic pressure,
Pra is the density of the panel material, and h is the panel
thickness.

The aerodynamic pressure for high supersonic Mach numbers
(M > .7 ), can be reasonably described by the two-dimensional,
first-order theory approximation,

u” .
A ~ - SaY [ w M -2 i_}w%
PA | na 4 ﬁ ~ + AL __ 4 T 24 (2)
v & L v~ vy i Vv uc.)

This expression assumes the pressure on the bottom side remains
constant at the free-stream value Po - Note also for large
M, the above reduces to aerodynamic piston theory19 since



2

M-1 —> M and  (M-2)/(m-1) —> L.

Combining Eqs. (1) and (2), and introducing the nondimen-
sional coordinates ¥ ,7 , T defined as

F= 4 m =+ T = wt )

will result in the basic partial differential equation for panel
flutter,

+
A'w " Sw ML¢ W " W 4 Jw
X2 + =) — o+ A == ~—
1. 2 (4)
4—'\1 E Z -
A Thw + T 2Y + wra) Y = ¢
+ UT"I T X 9?2‘ Qb/ ’a'yll

wherc the following nondimensional parameters have been intro-
ducced,

N = §El£ft_ dynamic press. (5)
D im=—1 param.
I = Ga T Is total damp. coeff.  (6)

N 2
Ga = _335{_5\1@1 230 A Ca (3_) acro. damp. coeff.  (7)

— W .
(38 (%ﬁ‘zy etfective struct. (5)
[+
damp. coeff.
gvb aspect ratio (9)



b = f;;fa foundation param. (10)
P - N, a” longit. compress. (11)
* - T
T D paxams,.
1A
r, = Ny a lateral compress.

D param. §12)

In the above expressions, the reference frequency W, has been

chosen as
= D
&)0 = T | =
j 9uh a® (13)

which physically represents the lowest natural frequency of a
two-dimensional simply-supported panel (ﬂyg—e 0) with no
airflow, elastic foundation, or midplane compressive forces
present. Also, the total damping coefficient %%.is seen to
be simply the sum of two parts, .i. aerodynamic damping
coefficient 4, and an effeciive structural damping coefficient
%5 « The aerodgnamic damping coefficient % > first intro-
duced by Houbolt,  ranges from 0 to 100 and is shown plotted in
Fig. 2 for different panel sizes, altitudes, and panel materials.*
This ¢, is a more convenrwnt parameter here, than the commonly
used mass density parameter [+ . The cifective structural
damping coefficient %Ys 1s a consequence of the assumed ccnstant
structural damping (G4 which can be expressed as,

Gs = %L W, ?M b (14)

e e G o . wn o e S D EE W WD P WE wm Mh G D e em W e W =

The Mach number factor in braces is ofteu assumed to be its
aerodynamic piston theory value of 1.



where 9, = 2f§t=f2*(critical damping ratio) of any mode (O
The form of Eq. (14) implies that for any other mode ®Wj; |
the structural damping coefficient %; will be given by %U=:%~E;'
For typical panels, %i ranges from 0 to 0.03 approximately. !
The consequences of using other values of 9 for the higher

modes is explored in Section V.

Thus, the basic partial differential equation for panel
flutter, Eq. {4), is seen to depend here on essentially six
nondimensional parametcrs manely A , s /), ,?2 » Ny Ty o This

equation is to be solved subject to the simply-supported
boundary conditions,

aa  F=0,L ~—  w=o0, 5—;=O (15a)
£ M=20,1 = w= 0, %=O (15b)

The solution procedure for Eq. (4) begins by seeking
solutions in the form,

—

— v 67T
W(En,T) = W(3) LAAM., wwr'q] e (16)

where in general,

D
{
R
1..
.
el
~
'—l
>

The M variation in Eq. (16) satisfies the boundarv conditions
at M =0, 1. Unstable solutions will occur if & is real

and positive (static instability) or complex with a positive real



part (dynamic insiability). Inserting Eq. (16) into Eq. (4)
will yield the ordinary differential equation,

: dw , N = (18)
PR T BeiB)E =0

>3

Q

W d
w
5

[

where

O
il

w2« 5] "

To obtain a good insight into this problem, the basic ordinary
differential equation, Eq. (18), subject to the boundary con-
ditions, Eq. (15a), will first be solved thoroughly. Then,
using Egs. (19), (20), (21), the pertinent physical parameters
)\/%T,“/b , %, i, r,

6 will be related to the general
coefficients ( , A, B, , B; and physical panel flutter
*

PR SR R R L V-3 R N 8 WDl

OM e v v e - B S e e S T G e AP em W M M (Y e em e e WG e e

The mode parameter m is usually taken as rn =1 . Actually
all results come out in terms of moa /% which can be inter-
preted as an effective aspect ratio o/ where Y = b/m .

[P [N,



The general solution of Eq. (18) is,

™
W\
N
~
~W
Y
e
W
1
?
~N

W(z) = ¢, €& +c,& +ce  +cC.e (22)

where the C,, terms are arbitrary complex constants, and the

Zxw terms are the four roots of the complex characteristic
equation of Eq. (18). Inserting W into the boundary conditions,
Eq. (15a), yields the natrix equation,

B - ' C
1 L i 1 c, 0
' [ Z z, cop =50 (23)
Z
e' e* e e Cs 0
Z 2z z T z &
e zre’ 2o e ot LCU 0
: . L)

For nontrivial solutions of the constants Cm, the roots Z,,must
make the determinant A\ equal to zero, that is,

L 1 1 1
- z z * ™
A= | = zZ, B E | =0 (24)
€i| eiL C%S 8%4_
- 2 2 z 2 F
(e’ z,e” ze’ ze’

For a given value of C and of A, various values of B, and B
can be selected, and the four roots 2%,, %,, Z3, Z_, of the
complex characteristic equation of Eq. (18) can be found.



Then the complex function Q? can be evaluated, where *

& = A (25)

-le' 21_)(2. -23)(2324)(2}_-— 23><21'24)(25‘ Z4)

These values of @(BR)BI) can be plotted in the complex
plane. The combination of B, and B  which makes @(BK,B,;)z Ne)
is a solution (eigenvalue) of Eqs. (18) and (15a) for the given
C, A combination.

Equations (18) and (l5a) were solved numerically by an
IBM 1620 computer using the above procedure. Since many
eigenvalues, Bp , Br , can be found for each C, A combination,
it was necessary to trace out continuously the proper eigenvalue
branch by increasing A continuously from zero for a fixed value
of C. It is to be noted that for A = 0, the eigenvalues are
real ( B, = O) , and are easily evaluated analytically from
Eq. (18) as

By = —-97.41i n" 4+ 9.8047 n C (26)

wherz n is any integer. The eigenvalues remain real until a
certain value o€ a is reached above which they become complex
( B *x 0) . Figures (3a-3c) show the real eigenvalues
(Bn = o) , while Figs. (4a-4c) show the complex eigenvalues.,

Only the most critical eigenvalue branches for this problem are

- e e i e e e G D e Gy A U Mm e T et S s W G AN e M e e Wy e S -

s

“The function & , rather than the determinant A itself, is
evaluated to prevent the poissibility of repcated roois causing
the determinant to apprecach zero. Also, the function ,
unlike the determinant A, will prescrve its sign if one replaces
z, by %, , etc.



indicated (largest B, for a given C, A combination). VFigure 5
indicate s the minimum value of A for the first appearance
of complex e‘genvalues.

Returning to the physical panel flutter problem, it
remains to relate the general coefficients C, A, B, , B; to
the pertinent physical parameters A, ¢ , b, %, r, v, , 6
of the problem. These relations are given by Eqs. (19), (20),
and (21). Since © is to be determined for a given configura-

tion, it is conveni :nt to rewrite Eq. (21) as

rR

O + 9.0 - (QuriQ:) = 0 (°7)
where,
Q - Bre {Vm\,z,p _ [maY 3 (28a)
R T+ b/ Y (7?) -
Q = B= (28b)
md

Equation (27) can be solved for 8 to give

6 =-7% tj(?f)l* Qe + Qs (29)

This can be [urther reduced to

6 = |- - G’wirﬂ * LN”‘W” (30)



where

() = fr‘z—l GRS C RS

Lo {0} = — (31b)

For a given configuration defined by given values of 7\,<yra
%y, Jo, ry , Yy,Eqs. (19) and (20) can be used to find C and A.
From the appropriate Figs. 3 and 4, values of Bgand B are
found. Then Q:and Q; are evaluated from Eqs. (28a,b), Finally,
§ = & +Lw is solved from Eqs. (30) and (31a,b).

The complete panel behavior is characterized by plotting
the ™+ (W variation with increasing dynamic pressure N\ .
Instability occurs when & becomes positive (static type if
alsc & =0 , dynamic type if also W % O ).

Some typical plots are shown in Fig. 6. For the case of
no damping, %r =0, instgbility does not set in until after
two undamped natural frequencies have merged (hence the common
term "'frequency coalescence flutter'). For scme damping present
% > O , the instability sets in at a somewhat higher value
of 7\ . This occurs when & > O , i.e., when

- 2 2
- 97 . %/-r-l' (_j Q
T orwm ) Qe O] 7)) & 7
By routine algebraic manipulation, this criterion reduces to

~

(JI

e

> Y (33

10



Heneo [latter (& =0 ) occurs when

__&_I._ = O}T_ (34)

1-Qg

At this flutter condition, it can be shown that @&_if”g:.t A
and thus the [lutter frequency will be given by

_ R - Wr
wr: \ QR = 5:

Frequently, only the flutter condition is determined. However,
the violence of the {lutcer car also 1cadily be obtained from
Eq. (30) *

The dcflection shape wW!(%,m,7) for any phvsical
situation is found by considering the real part of the right-
hand side of Eq. (16). The complex function W(% is given by
Eq. (22) where the roots 2., arc those for the given situation,
and *the complex constants C,, are found from Eq. (23). Setting
C, = 1L and solving the first three equations of the matrix
equation, Eq. (23), for c, , C2 , @3 glves

Cow = — J%fﬁ {m=1,2,3) (36)
where
c, = 1
{" i i i [ (37)
D = ‘zf z, 7,
| e® e eb ‘

11
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—n
—

—_ —- L 1 T
NI - 754. Zl 23
e%‘, elw 23

NZ, NS = eTc.

Then, taking the real part of the right-hand side of Eq. (16)
gives
LT
W(%)n;‘d) = [_M mv’?.]e KWRW(I)T ~W1 M\a)T)

(38)
This can be plotted for various times during one cycle (&Gt =2m)
to give a clear physical picture of the deflection shape.
At a flutter condition, one has x =0 in the above equition.
Some dcflection shapes at flutter conditions (& =0 )
are given in Figs. (7a-72) for various C,A combinations and
the most critical eigenvalue branch (largest B; for this given
C, A combination), For A =0, the deflection shapes are simple
sine shape standing-wave types

W(3,m,m) = [A;m m-rrn] A TR o0 DY (39;

As the coefficient A is increaced for a fixed value of C, the
deflection shape changes from a standing-wave type at low values
of A where purely real eigenvalies (fB,==o> are present, to

a traveling-wave type at high values of A where complex
eigenvalues ( B, % 0) arc present. Also, ihe deflectious tend
to be concentrated at the rear end of the panel for large
negative values of C. 1In thesc figures, only the first half

of a period is shown since the second half is the negative of
the first half.

12



The solution procedures used here ior the panel f{lutter
problem represent an cxact solution rather than a modal solution
of the differential cquation and hence do not possess con-
vergence difficulties. These procedures are analogous tc those
used previously by Dugundji and Gharcobzo for solving a rclated
differential equation. See also Movchan5’21.

Many other physical problems are characterized by the
ordinary differential equation Eq. (18) subjected to boundary
conditions Eq. (15a2). The general solutions given by Figs. 3
to 5 and the mode shapes by Fig. 7 can b: used to solve them

also.



SECTION III
APPLICATIONS

The general theory presented in Section IT is now applied
to various phvsical panel configurations in order tc show the
characteristics of panel flutter and the effects of the six non-
dimensional parameters, Eqs. 5 to 12. Essentially, the flutter
condition ( ® = O ) will be examined, and plots of dynamic
pressure parameter at flutter, °A_ , versus total damping

coefficient, ¢, , will be given for different a/p , ke, ¢, and
r, configurations. Also, an example of the complete panel
behavior will be given,
{a) Pure Aspect Ratio Effects, /b
For this series of panels, one considers & = rx =1n, = C,

i.e., no elastic foundation, no longitudinal compression forces
and no lateral compression forces present. For these cases, only
dynamic type instability is possible., Figure 8 shows the dynamic
pressure parameter at flutter Ao, versus damping coefficient A
for different aspect ratios ¢/, . The flutter dynamic pressure N\
becomes large for low aspect ratios (high ¢/b ). Also, g
becomes independent of damping 9. at low values of 3q.and

roughly proportional tc 9 at high values of Ur - This indicates

a change of panel flutter from a constant dynamic pressure
rhenomenon at low values of damping to 2 constant velccity
phenomenon at high values of damping (thin, light panel
air). This also permits one to use the ''static airforce

: T
approximation’ ~, for %¥_<. L .

The flutter frequeacies iEF are also indicated in Fig. 8.
The deflection mode shapes for the points marked with a heavy
dot are given by Figs. 7a, b, ¢ (a/b==o ; A = 370, 1CoD, Zqooo)ﬁ

14
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~

~

A CQOCO’), The modes are seen to change from stanuing

wave types at low valuces of damping %+ to traveling wave

types at high values of 9, . Also, the modes become of very
short wave length, the dellections tend to be concentrated

at the rear end, and the flutter frequency becomecs high at large
values of damping I and low aspect ratios (high %/b ).

(b) Pure Elastic Foundation Effect, k

For this serics o nanels, one considers 2% = v, =1, =0,

i.e., two-dimensional panels with no loangitndinal or lateral
compression forces present. For these cases, again only dynumic
instability is possible. Figure 9 shows A¢ versus %+ for
different elastic foundation parameters k. The flatter dynamic
pressure param¢ter )F increases with Y and with k. The
presence of some litile damping <}‘is very important at high
valurs of k, since it can raise the flutter parameter .

well above the Gr=0 value of "A. = 343. Again, the [lutter
phenomena changes towards a constant velocity rather than a

constant dynamic pressurce phenomencn as %y OT k becomes large

he flutter frequencies W, are also indicated in Fig. 9.
At high values of k, the Wy becomes the simple natural frequeacy
of the secticon mass-on-spring foundation. The deflection
mode shapes for the pcints marked with a heavy dot are given by
Figs. 7a, b, ¢ (any value of k; A_= 370, 2,000, 20,000).
Again the modes charge from standing wave types at low values

h valy

nf a_ and k to fraveling wave tynes at high nes of a  and

011 ‘JT S S
Also, the modes become of very short wave length, the deflections
tend to be concentrated at the rear end, and the fluttcr frequency

becomes high at large valucs of %Tand ke



(c) Pure Longitudinal Compression Effect, T

For this series of panels, one considers &/, = Xk-=-¥} = Q,

i.e., two-dimensional panels with no elastic foundation, and no
lateral compressive forces present. Figure 10 shows "A; versus
% for different longitudinal compressicn forces rx (negative
ry 1indicate tension forces). The dynamic pressure at flutter
Mg increases with increasing tension (negative ry ) and algo
with increasing damping %Y » Again the flutter phenomenon changes
towards a constant velocity rather than a constant dynamic
pressure phenomenon as ¢, becomes large. For compressive forces
re > + 1 , static instability may also occur. The nature
of these curves for positive r, is better illustrated by a
cross plot, Fig. 11, which shows °\ for instability plotted
versus F, . The regions of dynamic and static instability are
readily apparent here. The point A=0, =1 represents the
Euler buckling load of the panel. It is to be noted that
aerodynamic forces may stabilize an otherwise statically wunstable
panel.

—

The flutter frequencies W  are also indicated in Fig. 10.
The deflection mode shapes for the points marked with a heavy dot
are given by Figs. 7a, b, ¢ {rn =0 ; Ap = 370, 2000, 20,000),
Figs. 7e, £ (r, = -32; Xp=4c00, co000)and Fig. 7j (ri=+5; A, = 370).
Again the modes change from standing wave tvpes at low values
of %r to traveling wave types at high values of % . Also,
the modes become of very short wave length, the deflections
tend to be concentrated at the rear end, and the flutter fre-

uency becomes high at large values of a_ and negative [, .
q y . g *

{(d) Combined Compression and Aspect Ratio-Effects

For this series of panels, one considers f.=o0, i.e., no
elastic foundation present, but with various combinations of the

lengitudinal compressive force Yy , lateral compressive force ry

16



and aspect ratio %b . For this categorv, two cases were con-
sidered,(a) vy variable, ry=0 )‘?@,: 2 and, (b) r, variable,
G: rx’&/b.‘: 2 .

For Case (a), the results are shown in Figs. 12 and 13.
The results are similar in nature to those given by Figs. 10
and 11, except that now a zerc flutter dynamic pressure con-
dition occurs at [Vx =+I(3 which is before the onset of static
iustability at r, = +16 . This A_=0 condition can readily be
removed by addition of a small amount of damping %, . In
fact, it can be seen from Fig. 12 that this anomalous zero
flutter dynamic pressure condition merely implies flutter occurs
at a constant velocity rather than at a constant dynamic pressure
here. The deflection mode shapes fer the points marked wi_u a
heavy dot zre given by Figs. 7a, b, ¢ (Y} = 8 ; A = 370, 2000, 20,000 ),
Figs. 71, j (ry=13; A.=20,370and,Figs. 7k,% (rx= i8; Ar = 200, z_ooo).
fhe same general remarks as for the pure longitudinal compression
effect described in Section IIIc apply here as well.

For Case (b) where t%,: ry , the results are shown in Figs.
14 and 15. The results are similar in nature to those given
by Figs. 10 and 11. Static instability sets in for 1, > +5 .
The deflection mode shapes for the points marked with a heavy
dot are given by Figs. 7b,c (v; = 8 ; Ag = 2000, 20,000).

The gsame general remarks as for the pure longitudinal compression
effect described in Section IIIc apply here as well.

(e) Boundary Support Effect

— - - ~ - . 1 0 - v~ ~
FOr this seriles OI panels, one CcOonsliders Az = ¥y = Ty —

i.e., no elastic foundation, no longitudinal or lateral
compressive forces present, but with different aspect ratios
and different boundary support conditions on the front and rear
edges of the panel. For these cases, the basic Eq. 18 must be

17



solved agaio subject to the different boundary conditions
present. Such calculations were performed for clamped-

clamped panels by Movchan22 and for clamped-free panels by
Dugundji and Ghareebzo. The complex eigenvaluns'BR)E§ for the
clamped-clamped case as obtained by Movchan are presented in
Fig. 16 along with the simply-supported ones used here for
comparison. The resulting plots of dynamic pressure parameter
at flutter 7\, versus damping %+ are shown in Fig. 17. 1In
general, the clamped-clamped case gives a higher flutter
dynamic pressure than the simply-supported case. However, at
either low aspect ratios (high ?/b) or at high values of
damping %t » cthe two )y:%approach each other. This is probably
due to the shorter wavelengths present in the flutter
deflection shapes here, and hence a lesser influence of the end
boundary conditions (see flutter deflection shape discussion in
Section IIIa). Also shown for comparison is a clamped-free
beam from results of Ref. 20. This also approaches the simply-
supported cese at high values of ?ﬁ_where the mode shapes show
short wavelength traveling waves present.

(£) Complete Panel Behavior

For interest, the series of panels examined in 3ection
IIIa (Pure Aspect Ratio Effect) was re~investigated to give the
complete panel behavior instead of merely the flutter condition.

For this series of panels, one has fe = rx = ry = Q.
Then making use of the theory of Section 11, the variation of
§ = %+ LD versus the dynamic pressure parameter A was
determined for different %/t and %1 configurations. Instead
of plotting the ® and w versus 7\ , a new parameter, the
amplification ratio, A.R., was introduced. This A.R. ig defined
as the ratio of amplitudes during one cycle of oscillation, and

indicates the violence of flutter. It is given by

18



2.7

A.R. = €& (40)

e8!

rigure 18 shows the amplification ratio A.R. versus the
dynamic pressure parameter A , for %b =0, 4 and several
values of 9. Flutter ( AR > 1 ) is seen to set in very
sharply for %L =0 and low values of damping %t . For low aspect
ratios (0/},:49 and also for high values of %y > the flutter
condition comes in more mildly. Also shown on this plot are
some values of the frequency (p associated with these
amplification ratios.
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SECTION TV
TRAVELING WAVE ANALYSIS

For low aspect ratio panels, the length along the stream
direction is much larger than the width ( ¢/, >> ! ). One
might consider such a panel as an infinitely long strip of '
finite width b, and seek traveling wave solutions of the basic
partial differential equation.* Although the use of first order
aerodynamics, Eq. 2, has certain limitations when applied to
traveling wave523, it will be used anyway in order to assess
the differences between the traveling wave analysis and the

finite panel analysis of the same mathematical equation.

The governing differential equations for panel flutter
at high supersonic Mach numbers is given as before by Eqs. 1 and
2. Combining Egs. 1 and 2, and introducing the new nondimen-

~/
-~

sicnal coordinates £, m ); defined as

v 4 ) ~
=2 n = % T o= .t (41)

will result in the partial differential equation for panel
flutter,

4 4- .
.a.x!./ + 7 a_'vw + _dl + 9\’%1/; + 'rr4‘~ la_\:_/.
2% o * T
3 9% o’ m )% o
k3 2 L1 (A‘A
4 ~ -~ T /
MR WIS A A LI
‘atrk d%L J ‘af)ll.

W e R A e eE R R e S dm e N L SE a Ge G e e e e - -

*
This traveling wave approach for low aspect ratio pancls was
investigated by Dowell (Ref. 23) using the complete linearized
aercdynamic theory. Also, this traveling wave approach is
often used in problems cf cylindrical shell flutter (Ref. 10)
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where the following new nondimensional parameters have been
introduced,

2 3
Y _ Vb _ bY
S W venr = & (42)

A T T R ()

~ —- { M(Ml- ) §a C b y :
- s ERERE - e o

Gs = o = = (—’;;5 Is (46)

~ o4 .

fo = l;; = (2) & (47)
e s - W w
r, = _:_’{_i- - (_:.‘)L ry (49)

The above nondimensionalization, Eq. 41 and parameters Eqs. 43-
49 are now based solely on the width b for this infinite traveling

- o el N - * -
wave analysis. 'The reference frequency ), 1s here chosen as

() = T[' — e
W, J o L (50)



The basic partial differential equation

to the previous equation, Eq. 4.

, Eq. 42, is equivalent

The traveling wave solutions of Ea. 42 are sought in the
form

) L%?(ct-—x)
W(g,'n)%) = W, LMIMTT’T{]E

( ; (51)
srlC A
1’ \ T

MN
N—r

c
@,

= W, [Mmﬂoﬂ €

where § is the wavelength and c¢

is the wavespeed which in general
may be complex, i.e.,

© = Cg * ‘ Cr (52)

Generally, it is assumed that unstable solutions will occur if
the wavespeed c has a negative imaginary part. The ™ wvariation

in Eq. 51 satisfies the boundary conditions at M o= 0,1 .

Inserting Eq. 51 into Eq. 42 will vield the algebraic equation,

. %-rﬂ / z M XQ — 3
(\%) Y (%) -5 v e oY
where
— 2 2 L~ ~ !
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2b W,
c, = == f.‘?o%cM (55)

When no air forces and .o structural damping are present,
~ a4 . . 3 [~ 4 -
A\ o= ‘}r = Q0 , the above expression, Eq. 53 gives,
. _ + d

For a panel with no spring foundaticn and no midplane compressive

A

forces, £ = r, =ry, = 0, the minimum value of S occurs for
7 - . U -
m=1 and R/2p =1 and is given as S _; = 1 . Hence,

the reference wavespeed ¢, can be interpreted physically above
as the vacuum wavespeed for traveling waves with m=1, whose
nalf wavelength, £/2z , equals the width, b . This also happens
tv be the minimum vacuum wavespeed possible for such a panel.
Note also the simple relation of C, to the speed of sound in

the material, C Eq. 55.

M p]

Solving Eq. 53 for the wavespeed ¢ in the presence of air
forces and damping gives

e .32 0 aav. ot AL i
Co " 8b i((%‘)+s “ Bmb 7)

This can be further reduced to

o [@Lirﬂ + L[?ﬂg + c%ﬁﬂ (58)

Bb

Ol
(=]
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where

58a
le ™ b D?mxgrﬂi (38a)
Qﬁﬂn = 2]
= £ L | [Ta (o1, (2L Y (5l
M) = g T BT o) (3]
(58b)
The complete panel behavior is characterized by plotting the
C.+1Cy; variation with increasing dynamic pressure )\ for
various wavelengths £,/2p . Instability is assumed to cccur
when C, becomes negative. This occurs when
R It s DR ELS R P A0
o T | (Z%) ] 5T > - (5y) 0 s0)
By routine algebraic manipulation, this criterion reduces to
N 33 A
A > 2T D 9 4 (61)
Hence, flutter ( CI=TO) occurs when
~ 3 ~
>\ = 217 S C}T (62)
or equivalently,
T = M-2\ « h 63
U IC‘O(M"—L)SF Copa (63)
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where S is a function mainly of wavelength ratio Q/ﬁin as
defined by Eq. 54. At the flutter condition, Ea. 59b yields

L ir‘i = t %TE /&b and the corresponding wavespeed
and frequency at flutter become,

ce = +S ¢, (64)
W, = 2 Se, = 2(¥)S® (65)
F £ ° £/ © *

For a panel wiLh no spring foundation arnd no midplane compressive
forces ( & = rx »-r,.»o), the minimum value of S is fﬂmmr: 1
and occurs for m=1{ and £/26 = 1. Placing these values of S
and £/2b into tl.e above expressions, Eqs. 62-65 gives the

condition for the first onset of flutter, for such panels.

Figure 19 shows a plot of the dynamic pressure parameter
at flutter §;F versus the damping E;, for the infinite panel
traveling wave theory. Also shown for comparison are tne
results of the previously obtained finite panel analyses, Fig. 8,
when converted to the parameters :XF and %lesing Eqs. 43 and 44.
The traveling wave analysis gives a lower flutter dynamic
pressure than the finite panel analysis, particularly at low
values of ?r . At the higher values of %1: the agreement
and trends are better between the two theor® ‘. The flutter
frequencies ﬂ%/QJQ are also indicated in Fig. 19 ard the
agreements arc fair. The deflection mode shapes for the infinite
panel, traveling wave analysis, are simple sine shaped traveling
waves of waveleagth £ =2b , traveling at a wavespeed <« = C,
and having o frequency W, = Z a&. The corresponding deriection
mode shapes ol the rinite panel for the poiats marked ~ a
heavv dot are given in Figs. 7e, (V&Lrsd ; %, =.04  6.0) and
Figs. 7g, h (a/b = 10; §,=.03 , .80 ).
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They clearly resemble traveling waves and are yuwalitatively
similar in wavelength, wavespced, and frequency to the infinite
pancl, particularly at high values ef gT These finite panels
though, show large deflection amplitudes towards the r- ar of the
panel, as compared with the uniform deflection amplitudes of

the infinite panel, traveling wave analysis. For convenience,

a comparison of the mode shapes from the two analyses is shown
in Fig., 20 for the %, =10, 9, = .80 casc.

Summarizing, it appears that an approximate idea of the
flutter speed, frequency, wavespeed, and wavelength can be
obtained from an infinite panel, traveling wave analysis for
long, narrow panels at high values of damping %T (1ight, thin
panels in dense air). However, the end effects still play
important roles for panels of 2/, = (0, and any accurate
estimation of the flutter characteristics and deflection
shapes should be made by finite panel analyses.
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SECTION V
EFFECT OF ARBTTRARY STRUCTURAL DAMPING

All of the preceding analyses have assumed that the actual
structural damping coefficient ¢; , of any mode @W; was related
to that of the fundamental mode &, by the relation,

~ g W
R SR (66)

Other relationships may be assumed or measured experimentally.
For example, the alternate relationship,

;= T (87)

is commonly employed in standard V-g flutter analyses in industry.
It is of interest to examine the effect and sensitivity of these

other %J variations on the previous results.

To study these effects, it is convenient to solve the
panel flutter problem by modal methods. The basic partial
diffential equation of panel flutter is given by Eq. (4). Modal
solutions of Eq. (4) are sought in the form,

N
w(zm,7) = ) 9" 4Ty e mrn (68)
n={

where %nff)is the generalized coordinate of the nth mode, and

the mode shape, sin nITE sin marn , satisfies the simply
supnorted boundary conditions Eqs. (ija,b) on all cdges.

Inserting ka. (08) into £q. (+4), and applying Galcrkin's metnod
will result after some algebra, in the set of ordinary differentiail

equations,
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n+5.—:0d<{ (69)
.

— 7 may\ 2 may z X (70)
Eh% N +7.(-b—)h + (-To—) + b o+ eh + l’;(%)

The summation above is taken over all the s terms for which
n + s is an odd integer.

Consider now, for simplicity, a two mode analysis. The
above set of equations become,

é_l A ' . . 9«)\ _ (718.)
AR SR Tl = SR
éiz.,sfcjz, £ L 8X g = @ (71b)
hrr gy Bae v 229

In the second equation, an arbitrary factor {f was introduced
to permit the possibility of changing the amcunt of total

damping 9 of the second mode. To investigate stability, one
sets

9 T

(D = que (72)
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the characteristic -leterminant of the aoove equations then

becomes,
_,.Z - Q'\
(@ oG & eyt
30 = O (73)
8\ = -
3t (6 " +C0L +E">
Upon expansion, this gives the characteristic equation,
—94 -3 - —_
8 + H,8 + H,8 ~ H8 « H = 0 (74)
where,
HS = 03’7(1'+7c]
-
M, = E +E +fq. (75)
F4‘ - %%‘( S E.)
2
H, = EE, + (%)

s 9=d+iw of Eq. (74) are examined as A increases
from zero for any fixed configuration. This gives the complete

——

)

S ~ hammman ~Aacs 43 cvn
Y wlluUuLl o wiiit W utlued pudaitivics

To investigate only the flutter condition & = C | one

g = (w, in Eq. (74). This equation then splits into
a real and an imaginary part, namely,

scts



50 - [emae 18  [BE (2] = 0 e

_%T(i*f) 5: + o (E+ FEYW, = 0 (76b)

Solving Eq. (76b) gives the flutter frequency,

—

3 L\)F' EL+'FEI
w = — = —t
F wo J 1 + ‘f (77)

Placing this into Eq. (76a) gives, after much algebra, the dynamic
pressure parameter at flutter 2. as

— g (2
%F ® (LH:

)‘J (E; E.)l + %:(Ez*r § E‘\)(hf)‘
(78)

Equation (78) permits one to investigate the effect of unequal
total damping (% 1) on the flutter characteristics. A similar
such equation was presented by Bolotin.9

Returning to the damping characteristics, it is recalled
that the total damping is the sum of an aercdynamic damping 9 a
and an effective structural damping 9s+ It is convenient now
to differentiate between the damping in each mode, namely

(79)
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where the effective scructurarl dampin” coer ! Zcient G of the
t N dse

the ith mode is given from Eq. (8) as

Gsi = Gy 2 (80)

The aerodynamic damping coefficient %A remains the same for all
modes and hence there is no need to differentiate here between
t: e modes in Eq. (79). Using fqs. (79) and (80), one may express
the factor f as

e _ I 1+ (344 (81)
% L+ W (ogss/%m)

Thus, £ is seen to depend on two nondimensional ratios, namely,

Yv/a, = %': % (82)
= & G W (83)

yr
! <351 T W,

Also, for interest, the total damping and the undamped natural

frequencies of this two mode system can be expressed as,

Q?D

i

.53
4

U': [¥] AN

We - J}E? (83

= da (L+ ¥, (84)

8
[«
L] |
~
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For any combination of 4, %, 4. the ratios %s/9a and L%
may be evaluated from Eqs. (82), (83), and {(85). The resulting
values of f and &7 from Eqs. (81) and (84) may then be inserted
into the two mode flutter formula Eq. (78) to obtain Ne

Figure 21 shows a plot of the factor f versus %&g/%A for
various values of Y’ . Also shown on Fig. 21 is a plot of the
important parameter (-ZI:}/1+-f) versus £. For a given #f ,'as
%51/ %n increases from zero, the value of f varies from f{=1
to the asymptotic value = %/% The corresponding value of
(2{§/1+% ) decreases monotonlcally from unity to some other
asymptotic value. Placing these results into the formula
Eq. (78), one can see that because of the factor (21?3/1r¥),
the addition of actual structural damping % may actually
destabilize the system, particularly for systems where the iero-
dynamic damping IA is small. The maximum amount of this
destabilization possible depends solely on the effective struc-
tural damping ratio Qf and is given from the asymptotic values
of £ as,

AF (wif‘k struct. Aamfl) ZW
=
?\F ( no strucl. damp.) LA \Y

(86)

In the case of equal effective structural damping coefficients,
V=1, the system is always stabilized by the addition of

- - 2 - b -~ *
actual structural damping g .

A oot m B4 G e n Em e tm MR e e e SR S G G M) WS An Ce A Em G es am e W e ae

This destabilization occurring gPon the addition o damping
has been pointed out by Ziegler<™, Bolotin Johns
others.
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The previous theory was applied to a panel with 44 = & =
=Te= 1y =0, i.e., a two dimensional panel with no elastic
foundation, and ne longitudinal or lateral compressive forces
present. For this case, W,/w, =1 , and W, w, = 4 . Two
types of structural damping relationships were considered,
namely a) %, =%, for which ¥'= 4 , and b) 9, = 4 ¢ for
which ¥ = 1 (equal effective structural damping coefficients).
Figure 22 shows the dynamic pressure parameter at flutter ‘A,
plotted versus the actual structural damping 94 present in the
pancl, for these two cases at different values of aerodynamic
damping. It is seen that at J,=-1, the addition cf actual
structural damping %1=.o§ will reduce the flutter dynamic
pressure parameter from A. =274 to A.=258 for the % =%
case, while there is a slight increase for the %,= 7, %+ case.
At A = I, the destabilization for the ‘3L= %, casc is much
less while again there is a slight increase in the %. = /4 %
case. These curves of 'XF versus %1 clearly illustrate the
typical "looping back" of the V-g curves of the standard
flutter analysis used in industry. This "looping back" 1is
thus seen to be a result of uneaual effective structural damping
coefficients, and not something associated with the use of

. *
viscous type damping rather than L%,}ax type damping.

To conclude this discussion, it might be interesting to
give a simplified expression for the flutter parameter )4.based
on the two mode approximation, Eq. (78). If E,< E, and 9, < L
Eq. {78) reduces simply to

Ot am - - A . en e . me R e am S e Gm e M Al M Gn e e e P Em o

*IL is to be noted that for no aercdynamic or structural damping
(g = 0), the dynamic pressure parameter at flutter . = 274
for these two mode analyses rather than the exact valuce of
Ap =343, A four mode analysis should actually be done for
numerical accuracy. Figure 22 however does give the proper
trends.
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,>\r-‘ =~ |8.26 (1+§> (Ez_ E|> (87)

This expression shows the direct relationship of the flutter
parameter Ag on the factor (1§?)/1+F), and was first given

by Bolotin.9 However, the crucial role of the effective
structural damping ratio Wy' in establishing the correct value

of £ to be used in this expression must clearly be understood
(see Fig. 21).
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SECTION VI
CONCLUSTIONS

This report has reviewed the theoretical characteristics
of panel {lutter at high supersonic Mach numbers. Byv using
lineer plate theory and two-dimensional, first order aero-
dynamics, the problem was shown to depend on six nondimensional

parameters, A, Y45, */p . ke , v, , r

.

Y

An exact solution of the resulting partial differential
equations revealed the nature of the eigenvalues and their
general behavior. From these cigenvalues, both static and
dynamic instabilities can be physically obtained. The solution
procedure climinates difficulties associated with convergence
of modal methods and may also be of interest in other similar
type stability problems, [or example, wing flutter, flowing
pipe lines, beam buckling, etc.

For understanding panel flutter, the effect of damping
is important. At low values of > panel flutter occurs at
constant dynamic pressure q, and has the appearance of standing
waves. At high values of <3T(light, thin panels in dense air),
panel flutter occurs at constant velocity V, and has the appear-
ance of traveling waves. Many analyses have been done previously
assuming q_= 0 (the "static air force approximation''). This
1s adequate in some ranges, but inadequate in others, , articularly

3IE N =N MTasa N =0 ~Anmdi
AL N T W [ i

- e - - P

nis A= 0 condition merely implies flutter ovccurs
at constant velocity V, rather than at constant dynamic pressure

!

q and does not mear the syvstem is unstable for any airspeced.

For pure aspec’. ratio and pure elastic Loundation, only
dynamic tvpe instabilities are possible, but with compressive
forces r, , I, present, static type instabilities (buckling) can

also occur.



The effects of front and rear edge conditions on the plate
tend to become unimportant for low aspect ratios and also for
high aerodynamic damping 9%,, where the resulting mode shapes
begin to appear like traveling waves.

The flutter condition appears to set in sharply for
two-dimensional panels at low values of damping ¢, . For low
1
aspect ratios and for high values of %% , the flutter condition

comes in more mildly.

Infinite panel, traveling wave analysis can be used to
obtain an approximate idea of the flutter characteristics of low
aspect ratio panels at high values of damping %; . The travel-
ing wave analysis gives lower flutter speeds than the finite
panel analysis and the details of the deflection mode shapes
are somewhat different, but the general trends are similar

The effect of adding structural damping 4. to a finite
panel is frequently destabilizing. The amount of this destabili-
zation depends on the relative amount of structural damping
added to each mode of the panel, and is characterized primarily
by the ratio Vf - Limits on the maximum possible destabilization
are established for a two mode analysis. I1f the effective
structural damping is added equally ('Y"= 1 ), the system is
always stabilized.
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